A Systematic Review of Propensity Score Methods in the Social Sciences

Felix J. Thoemmes
University of Tübingen

Eun Sook Kim
Texas A&M University

The use of propensity scores in psychological and educational research has been steadily increasing in the last 2 to 3 years. However, there are some common misconceptions about the use of different estimation techniques and conditioning choices in the context of propensity score analysis. In addition, reporting practices for propensity score analyses often lack important details that allow other researchers to confidently judge the appropriateness of reported analyses and potentially to replicate published findings. In this article we conduct a systematic literature review of a large number of published articles in major areas of social science that used propensity scores up until the fall of 2009. We identify common errors in estimation, conditioning, and reporting of propensity score analyses and suggest possible solutions.

Propensity score methods, as originally proposed by Rosenbaum and Rubin (1983), are experiencing a tremendous increase of interest in many scientific areas including the social sciences. The number of newly published articles each year that used propensity scores in the psychological and educational literature, as assessed by the database Web of Science, is rising nearly exponentially (see Figure 1). This development clearly demonstrates that there is interest in this methodological tool.

However, there exists much variability on how propensity score methods are implemented in practice and recent methodological advances are not fully incorporated in the substantive literature yet. In addition, there is lack of con-
FIGURE 1 New published articles per year in psychology and education. Individual data points display number of new publications for each year. Overlaid lowess smoothing lines approximate trend in data. This graph contains both applied and methodological articles and is different from the meta-analysis sample that only contained applied articles.
reporting patterns in regard to propensity score analyses were most prevalent in the social science literature, specifically in psychological and educational research. Before presentation of our methods and results we provide a brief overview of necessary steps in a propensity score analysis. For more detailed overviews we refer the reader to introductions and applied examples by Caliendo & Kopeinig (2008), Stuart (2010), Stuart et al. (2009), or Shadish and Steiner (2010). A more thorough treatment involving general issues of the design and analysis of observational studies is given by Rosenbaum (2010).

WHAT IS THE PROPENSITY SCORE?

Briefly explained, the propensity score is a conditional probability that expresses how likely a participant is to be assigned or to select the treatment condition given certain observed baseline characteristics. In a propensity score analysis this conditional probability is used to condition observed data, for example, through matching or stratification on the propensity score. The aim of conditioning on the propensity score is to achieve balance on the observed covariates and recreate a situation that would have been expected in a randomized experiment. Balance on covariates is desirable because a balanced covariate (which is by definition uncorrelated with treatment assignment) cannot bias the estimate of a treatment effect, even if the covariate itself is related to an outcome variable. An important insight from Rosenbaum and Rubin (1983) was that balance on the propensity score produces on average balance on observed covariates. Under the assumption that all relevant covariates have been assessed, a propensity score analysis can yield unbiased causal effect estimates. More formally, the key assumption of a viable propensity score analysis is the so-called strongly ignorable treatment assignment assumption. This assumption holds if the potential outcomes \(Y_0 \) and \(Y_1 \) are conditionally independent of treatment assignment \(Z \), given a vector of covariates \(X \).

The potential outcomes are unobserved quantities that refer to potentially observable values if a particular unit were assigned to either treatment or control condition. For more information on potential outcomes and the strongly ignorable treatment assignment assumption see Rosenbaum and Rubin (1983) or Rubin (2005).

It should be noted that this assumption cannot be empirically tested—researchers can only attempt to build a convincing case that all important covariates have been assessed or employ actual randomization of treatment assignment, which ensures that all observed and unobserved covariates are on

1Another part of this assumption is that no propensity scores with the two extreme values of 0 and 1 are observed, or in other words each unit has a nonzero probability of being either assigned to the treatment or the control condition.
average balanced prior to treatment administration. Sensitivity analyses (e.g., Robins, Rotnitzky, & Scharfstein, 1999; Rosenbaum, 1991a, 1991b) that probe how much bias an unobserved covariate would have to exert to negate the observed treatment effect can help to bolster one’s faith in the assumption that all important covariates and potential confounders have been assessed.

To put the propensity score technique into an applied context, consider an example in which an estimate of the effect of retaining young schoolchildren on later academic achievement is of interest (e.g., Hong & Raudenbush, 2005; Hughes, Chen, Thoemmes, & Kwok, 2010; Wu, West, & Hughes, 2008). Because retention of schoolchildren is not randomized, an unadjusted estimate of the treatment effect of the retention policy could be potentially biased. Children who are retained differ on many characteristics, such as intelligence or academic performance prior to retention. In fact, one would assume that the least academically gifted children would be retained and more academically gifted children promoted. Comparing academic achievement between retained and promoted children at a later point in time would yield a biased treatment effect of retention because children in the retained and promoted group were so dissimilar at the onset of the study. Using propensity score analysis can potentially mitigate these biases. In particular, researchers can estimate propensity scores based on important student characteristics and assign probabilities of retention based on an extensive list of covariates to each single child. In a next step, children with similar propensity scores (and therefore similar conditional probability of being retained) but different retention or promotion status can be matched on the propensity score. The assumption is that the matched samples of children are identical (or at least comparable) on many background characteristics and only differ in their retention status—just as we would expect from a randomized experiment. Differences between the groups of retained and promoted children in the matched sample can then be assessed and interpreted.

USE OF THE PROPENSITY SCORE

In this section we briefly illustrate how the propensity score is used and which analytic choices are being made on the part of the researcher. Although this section is not meant to be a formal introduction to the use of propensity scores (which can be found elsewhere; e.g., Stuart, 2010), it should serve the purpose of demonstrating that researchers can use different analytic approaches when performing a propensity score analysis. Because of this methodological variability associated with propensity score analyses, it is important that choices made in the process are explicated in published work.

A propensity score analysis can only be as good as the covariates that are at the disposal of the researcher. Only a rich set of covariates can make the
strongly ignorable treatment assignment assumption credible and therefore it is of importance that researchers give a detailed account of the variables that were collected. Other researchers depend on that information to judge the quality of the analysis. It is usually not sufficient to just use demographic data such as age, gender, and ethnicity. Propensity score models that are conducted with only few covariates often do not yield unbiased causal effect estimates (Shadish, Luellen, & Clark, 2006).

After many covariates have been collected, the propensity score is estimated. Theoretically any model that produces estimates of the probability of group membership for each participant can be used to estimate propensity scores. Examples are logistic regression, probit regression, or discriminant analysis. More recent work has employed methods based on data mining algorithms (e.g., boosted regression trees; McCaffrey, Ridgeway, & Morral, 2004). However, these techniques are not widely used yet.

It is, however, insufficient to simply report the type of model that was used for estimation. More detail is needed as to how variables were included or excluded in the model. Common choices for model selection are nonparsimonious models (in which all variables are included) or approaches based on statistical significance, often with significance levels that are larger than the usual .05 cutoff (see, e.g., Shadish et al., 2006). No definite answer exists as to which cutoff value will produce the best balance and it is unclear if one single optimal cutoff value would work for a range of different data sets.

After estimation of the propensity score the data is conditioned, for example, using matching (e.g., Rubin & Thomas, 1992, 1996), adjustment by subclassification or stratification (e.g., Lunceford & Davidian, 2004; Myers & Louis, 2007; Rosenbaum & Rubin, 1984), or weighting (e.g., Hirano & Imbens, 2001). Another approach that is occasionally encountered in applied research (see, e.g., Weitzen et al., 2004, for an overview) is to use the propensity score as a covariate in an Analysis of Covariance (ANCOVA) type model. However, this approach is not recommended because it has additional assumptions unique to regression adjustment, namely, that the relationship between the estimated propensity score and the outcome must be linear and that no propensity score by treatment interaction exists.

Each of these approaches will in most circumstances result in slightly different estimates and it is therefore necessary to report on the details of the particular method that was chosen. Especially matching, even though conceptually straightforward, can be implemented operationally using several different and complex procedures. Without going into detail on the subtleties of matching, we briefly mention that widely varying methods exist and therefore reporting of how matching was performed is important. Broadly speaking, matching strategies can be distinguished by several different factors. One distinguishing factor is how many treated units are being matched to control units and vice versa. In
the simplest case, the units are matched 1:1, which means that one unit in the
treatment group is matched to one unit in the control group. A related approach to
retain additional units is to match several control units to a single treated unit, so-
called one-to-many matching. This can be achieved by matching each participant
to a fixed number of participants in the other group (e.g., one-to-three matching)
or to a variable number of participants, depending on the availability of adequate
matches. Ming and Rosenbaum (2000, 2001) describe algorithms to perform
one-to-many matching. A special case of one-to-many matching is full matching
(Hansen, 2004; Rosenbaum, 1991c) in which many control units are matched
to one treated unit and many treated units are matched to a single control unit.

Another dimension on which matching algorithms can be differentiated is
whether exact or approximate matching is employed. Exact matching requires
two units to be identical on the propensity score. An alternative is to match
units that have approximately the same propensity score, often called “nearest
neighbor” matching. In this approach a unit is matched to another unit that is
closest to it in terms of the estimated propensity score. To avoid bad matches
that have very different propensity scores, a “caliper” can be defined. A caliper is
a predetermined maximum discrepancy for each matched pair on the propensity
score for which matches are allowed. When using caliper methods, researchers
should report the width of this caliper (e.g., Rosenbaum & Rubin, 1985, suggest
that the caliper width should be set to one quarter of a standard deviation of
the logit of the propensity score). A related strategy is to introduce penalties to
distance scores between two participants if their distance to each other exceeds
a certain threshold (Haviland, Nagin, & Rosenbaum, 2007).

A third dimension to distinguish matching schemes is whether matches are
formed to minimize the average absolute distance on the propensity score of
all units in the whole matched sample (“optimal matching”; Gu & Rosenbaum,
1993; Hansen, 2004; Rosenbaum, 1989) or whether a single match is formed
with the best available unit one at a time without trying to minimize average
distance globally (“greedy matching”). It should be noted that still other match-
ing algorithms exist (e.g., kernel matching; Heckman, Ichimura, & Todd, 1997,
1998), which we do not discuss here due to their infrequent use in the social
sciences.

If conditioning methods other than matching are used, it is also important
to report accompanying details. For example, if participants are stratified based
on the propensity score, it is necessary to report how the strata were formed
and also how many strata were formed. A common choice is to subclassify data
into at least five strata defined by the propensity score as studies by Cochran
(1968) have shown that five strata remove approximately 90% of the bias due
to measured confounders when estimating a linear treatment effect. The strata
are usually chosen to be of equal size but can also be chosen to minimize the
variance of the treatment effect estimate (Hullsiek & Louis, 2002).
Finally, it is possible to use the propensity score as a weight in an analysis. Several authors describe this approach (e.g., Hirano, Imbens, & Ridder, 2003; Lunceford & Davidian, 2004; McCaffrey et al., 2004). Usually a weighting scheme is employed in which each treated observation is weighted by the inverse of the propensity score; each unit in the control group is weighted by the inverse of 1 minus the propensity score. Kang and Schafer (2007) and Schafer and Kang (2008) report that weighting estimates have the disadvantage that they can be highly influenced by weights that are assigned to participants whose propensity scores are very close to the boundary values of 0 or 1. Furthermore, weighting estimates are associated with computation of so-called robust (“sandwich”) estimators for model standard errors.

An important part of the propensity score analysis is a careful check of model adequacy and underlying assumptions. Two central properties of the propensity score model should always be assessed and reported: the balance property and the common support region. The balance property describes whether balance in terms of means and variances has been achieved on the covariates (and potentially on interactions and polynomial terms). The common support region, on the other hand, describes the region of overlap between the two propensity score distributions. A broad region of common support allows causal effect estimates over the full range of propensity scores in the sample, whereas small common support regions restrict the estimation of a causal effect to a subsample within a specified region of a propensity score distribution.

Different methods exist to check both of these properties. A straightforward method to check balance involves testing covariates (and potentially interactions and polynomial terms; e.g., Austin, 2009a; Rubin & Waterman, 2006) for significant differences between the treated and control group in the matched sample (e.g., Hansen, 2004, 2008; Rosenbaum & Rubin, 1983). Absence of significant differences is taken as evidence that balance has been achieved. Other authors (e.g., Austin, 2007; Ho, Imai, King, & Stuart, 2007) criticize significance tests in the context of matching due to the dependence on sample size and suggest examining standardized differences before and after matching. This standardized difference is well known to psychologists as Cohen’s d (Cohen, 1988). A caveat, as noted by, for example, Stuart (2008) is that the same denominator term (i.e., the same standard deviation) across unmatched and matched sample should be used to determine the standardized difference.

Balance of the propensity score or the covariates themselves can also be examined graphically (e.g., see Helmreich & Pruzek, 2009). Different graphical methods can be used, for example, comparing box plots (Tukey, 1977) for each covariate in the two groups, plotting and comparing histograms or kernel density estimates of the distributions in each group, or using Q-Q plots of the propensity scores or covariates in both groups. Austin (2009a) notes that graphical approaches, in particular the comparisons of the distribution of the
propensity score, are often not helpful in evaluating differences on covariates.

Another step in assessing model adequacy is to determine whether the propensity distributions of the two groups have sufficient overlap. This is usually done by examining the range of the propensity score distributions in the treatment and control group. The common support region is especially important because it is intimately linked to the type of generalization of the causal effect that is possible from the analysis. Generally speaking, it is advisable to exclude units that fall outside the common support region as no causal effect is defined for these units. Imai, King, and Stuart (2008) and King and Zeng (2007) provide an overview of this issue.

The last step in the propensity score analysis is the actual estimation of the treatment effect corrected for potential bias. The choice of the treatment effect estimation model depends partly on the conditioning scheme that was chosen earlier. Currently an issue of debate is whether statistical procedures following matching on the propensity score need to be adjusted for the matched nature of the sample. Schafer and Kang (2008) remark in the context of propensity score matching that “there is no reason to believe that the outcomes of matched individuals are correlated in any way” (p. 41) and that therefore the use of the independent sample standard errors is justified, a point that is echoed by Stuart (2008). Austin (2008a), on the other hand, urges researchers to use standard errors that account for matched samples, such as the dependent samples t test standard error. Austin (2009b) also conducted simulation studies showing that analyses that accounted for the matched nature of the data had Type I error rates and confidence intervals closer to the nominal levels. Hill (2008) argues that the exact nature of how this adjustment for matched data should be conducted is still open to debate.

The preceding section illustrated that a propensity score analysis can be implemented with many varying methodological choices that have to be made at every stage of the procedure. We attempt in this systematic literature review to provide an overview about the methods that are actually being used by researchers in the social science and hope to comment on areas that could potentially be improved.

METHODS

To determine the sample for our systematic literature review we searched three major social science databases (Web of Science, ERIC, and PsycINFO). We used the search term *propensity score* throughout all searches and did not impose any limits on other search criteria, for example, year published or type of publication. There was substantial overlap of the published papers found in
all three databases. We refined the results from Web of Science by including only studies that were published in the areas of psychology, education, and other social sciences. Studies published in other areas, for example, medicine, economics, health care, and so on, were excluded. This search procedure yielded a total of 111 published articles. After an additional refining (e.g., excluding purely methodological papers or articles that used the term *propensity score* outside its statistical meaning), 86 relevant papers were selected for the final analysis sample of the systematic literature review. All included papers are listed in the Appendix. For each study we collected 23 methodological variables that coded important aspects of a propensity score analysis. All variables are displayed in Table 1.

Two raters independently coded, discussed, and recoded a subset of the studies (25 studies out of 86) and achieved good to very good agreement on all but one variable. We employed Krippendorff’s α as a measure of agreement because it can be used for both categorical and continuous data. Using a macro provided by Hayes and Krippendorff (2007), we estimated that Krippendorff’s α was

TABLE 1

<table>
<thead>
<tr>
<th>#</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Field of study</td>
</tr>
<tr>
<td>2</td>
<td>Year published</td>
</tr>
<tr>
<td>3</td>
<td>Type of covariates (demographics only, extended list)</td>
</tr>
<tr>
<td>4</td>
<td>Number of covariates assessed</td>
</tr>
<tr>
<td>5</td>
<td>Number of covariates in final propensity score model</td>
</tr>
<tr>
<td>6</td>
<td>Estimation of propensity score (logistic, probit, other)</td>
</tr>
<tr>
<td>7</td>
<td>Modeling strategy (stepwise, nonparsimonious, manually)</td>
</tr>
<tr>
<td>8</td>
<td>Conditioning strategy (matching, stratification, weighting, regression)</td>
</tr>
<tr>
<td>9</td>
<td>Matching strategy (1:1, 1:many, other)</td>
</tr>
<tr>
<td>10</td>
<td>Matching strategy 2 (greedy, other)</td>
</tr>
<tr>
<td>11</td>
<td>Type of matching (exact, nearest neighbor, other)</td>
</tr>
<tr>
<td>12</td>
<td>Caliper usage</td>
</tr>
<tr>
<td>13</td>
<td>Caliper width</td>
</tr>
<tr>
<td>14</td>
<td>Caliper scale</td>
</tr>
<tr>
<td>15</td>
<td>Percentage retained</td>
</tr>
<tr>
<td>16</td>
<td>Number of strata</td>
</tr>
<tr>
<td>17</td>
<td>Type of weights (inverse probability weights, other)</td>
</tr>
<tr>
<td>18</td>
<td>Balance checking (significance test, standardized difference, raw difference)</td>
</tr>
<tr>
<td>19</td>
<td>Balance quantity (means, variances, both)</td>
</tr>
<tr>
<td>20</td>
<td>Balance variables (covariates, propensity scores, both)</td>
</tr>
<tr>
<td>21</td>
<td>Common support check (yes, no)</td>
</tr>
<tr>
<td>22</td>
<td>Model revisions after propensity score estimation (yes, no)</td>
</tr>
<tr>
<td>23</td>
<td>Adjusted standard errors (yes, no)</td>
</tr>
</tbody>
</table>
above the minimally acceptable threshold of .667 (Krippendorff, 2004) for all but one variable. For most variables a was close to .80. The variable for which we failed to achieve acceptable reliability ($\alpha = .14$) was the percentage of units that were retained after matching. We do not interpret the actual value of this variable but discuss implications and causes of the low reliability. The remaining portions of studies were divided between the two coders and coded individually.

RESULTS

Our results are summarized in Tables 2 to 5, but we also provide a narrative summary of findings. Implications of findings are presented with results and followed by a general discussion.

Field of Study

In our sample a large number of studies were published in the field of education (34 studies; 39.5%), most notably in the journal *Educational Evaluation and Policy Analysis* (11 studies; 12.8%). Other fields with a larger number of articles were public health (11 studies; 12.8%), criminology (10 studies; 11.6%), and psychology (8 studies; 9.3%). Remaining studies were published in other fields of social science (e.g., social work, family studies, sociology).

Year Published

Congruent with the data presented earlier in Figure 1, the number of articles in our sample increased with year of publication. While there were only 2 substantive articles published in 2003, this number increased steadily to 25 in 2008 and tapered slightly off in 2009 to 18 published articles. The data, however, were collected in October 2009 and therefore the number of published articles in 2009 could be underestimated, not accounting for articles published in November or December of 2009.

Type and Number of Covariates

In order to assess the adequacy of assessed covariates in addressing potential bias, we collected information about what type of covariates were collected in the individual studies. Only a single study (1.2%) relied solely on demographic variables (age, gender, race, and sociodemographic status) to estimate the propensity score. A vast majority of 81 studies (94.2%) assessed an extended
list of covariates that went beyond the simple demographics. Four studies (4.7%) did not provide enough information to infer what covariates were assessed.

For 79 of the studies we were able to count the number of covariates that were assessed. The number of covariates ranged from as little as 3 to as much as 238. The mean number of assessed covariates was 31.3, the median was 16, the 25th percentile was 9, and the 75th percentile was 29. Although it is impossible to determine for each single case whether a sufficient number of critical covariates was assessed in order to render the strongly ignorable
TABLE 3
Raw Frequencies and Percentages of Categorical Variables for the 58 Studies That Used Matching

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:1 matching</td>
<td>25</td>
<td>43.1</td>
</tr>
<tr>
<td>1:many matching</td>
<td>18</td>
<td>31.0</td>
</tr>
<tr>
<td>More than one strategy used</td>
<td>9</td>
<td>15.5</td>
</tr>
<tr>
<td>Unknown</td>
<td>6</td>
<td>10.3</td>
</tr>
<tr>
<td>Matching strategy 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greedy matching</td>
<td>31</td>
<td>53.4</td>
</tr>
<tr>
<td>Other (e.g., optimal or kernel)</td>
<td>14</td>
<td>24.1</td>
</tr>
<tr>
<td>Unknown</td>
<td>13</td>
<td>22.4</td>
</tr>
<tr>
<td>Type of matching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Nearest neighbor</td>
<td>34</td>
<td>58.6</td>
</tr>
<tr>
<td>Other (e.g., kernel)</td>
<td>18</td>
<td>31.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>8.6</td>
</tr>
</tbody>
</table>

treatment assignment assumption plausible, we believe that in only very few cases will 3 variables be enough to convincingly control for all potential biases. On the other side of the spectrum, more than 200 variables make a very convincing case that potential bias due to unobserved confounding variables is probably minimal. Generally speaking, it is encouraging to see that most researchers exhibit an effort in collecting important covariates beyond purely demographic variables. A point of criticism is that there were still 7 studies

TABLE 4
Raw Frequencies and Percentages of Categorical Variables for the 62 Studies That Conducted Balance Checks

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of balance check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance test</td>
<td>41</td>
<td>66.1</td>
</tr>
<tr>
<td>Standard difference</td>
<td>14</td>
<td>22.6</td>
</tr>
<tr>
<td>Graphical</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>Raw difference</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>More than one approach</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>Balance variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariates only</td>
<td>45</td>
<td>72.6</td>
</tr>
<tr>
<td>Propensity scores only</td>
<td>8</td>
<td>12.9</td>
</tr>
<tr>
<td>Propensity scores and covariates</td>
<td>9</td>
<td>14.5</td>
</tr>
</tbody>
</table>
TABLE 5
Descriptive Statistics of Continuous Variables for Relevant Studies With Observed Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>% Reported</th>
<th>M (SD)</th>
<th>Percentiles (25th, Median, 75th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of covariates collected</td>
<td>79</td>
<td>91.9</td>
<td>31.3 (45.0)</td>
<td>9, 16, 29</td>
</tr>
<tr>
<td>Number of covariates entered in final model</td>
<td>37</td>
<td>43.0</td>
<td>18.8 (13.9)</td>
<td>8, 16, 24</td>
</tr>
<tr>
<td>Caliper width (raw propensity score)</td>
<td>9</td>
<td>33.3</td>
<td>.02</td>
<td>.01, .01, .05</td>
</tr>
<tr>
<td>Caliper width (SD of raw propensity score)</td>
<td>4</td>
<td>14.8</td>
<td>.19</td>
<td>.15, .20, .25</td>
</tr>
<tr>
<td>Caliper width (SD of logit propensity score)</td>
<td>5</td>
<td>18.5</td>
<td>.17</td>
<td>.10, .25, .25</td>
</tr>
<tr>
<td>Number of strata</td>
<td>19</td>
<td>90.5</td>
<td>8.26</td>
<td>5, 5, 10</td>
</tr>
</tbody>
</table>

(8.1%) that did not provide enough information on how many covariates were assessed.

The reporting of covariates that ultimately were included in the propensity score analysis was much worse. We were only able to unambiguously infer from 37 studies (43.0%) how many covariates were entered into the final estimation model of the propensity score model. The remaining 49 studies (57.0%) did not provide enough information to confidently determine how many variables were actually used in the estimation of the propensity score. It might be conjectured that authors who omitted the information on how many variables were used for the prediction of the propensity score used all variables in their data set but without explicit mention it is impossible to know. Among the 37 studies that reported information of inclusion of covariates in the final estimation, the mean number of covariates was 18.8, the median number was 16, and the 25th and 75th percentile were 8 and 24, respectively. Our observed data therefore suggest that generally not all variables that were collected and reported are also used in the estimation of the propensity score and it is implicitly assumed by researchers that the influence of these covariates on the estimate of the treatment effect is zero or negligible. In addition, most studies did not report whether only linear terms were included or if interaction or polynomial terms of covariates were included in the estimation model as well. We believe that substantive studies should report both the total number of collected covariates (and if possible report them as a list in an appendix) and the variables that were ultimately used to estimate propensity scores. In addition, it is necessary for purposes of replication to report if nonlinear terms (i.e., interactions or polynomial terms) were entered in the prediction model as well.
Estimation of Propensity Score Models

The predominant mode of estimating the propensity score in our sample was a logistic regression followed by probit regression. Sixty-seven studies (77.9%) used logistic regression, and 10 studies (11.6%) used probit regression. The remaining 9 studies (10.5%) did not provide enough information to discern what model was used. Other methods, for example, discriminant analysis, or regression trees were not used in our sample of studies. The logistic and probit regression models are assumed to work reasonably well in many circumstances; however, researchers should also be aware of more advanced models. McCaffrey et al. (2004) provided information and accompanied software to use boosted regression trees when estimating propensity scores. We encourage researchers to explore these new methods as there is evidence that these methods can in some circumstance yield better results (see McCaffrey et al., 2004). One of the advantages of these algorithmic approaches is that any nonlinear terms are automatically discovered and entered into the estimation model of the propensity score.

Modeling Strategy

Overall reporting of choice of inclusion or exclusion of covariates in the model was lacking. Forty-eight studies (55.8%) did not provide enough information to determine how covariates were chosen to be included in the estimation of the propensity score. Five studies (5.8%) described using an automatic stepwise procedure (e.g., forward or backward stepwise regression). Thirteen studies (15.1%) described various methods of picking covariates into the model that we describe as manually entering terms. This includes examining bivariate relations between covariates and treatment assignment and including only those that passed a threshold of a prespecified significance level or manually adding and deleting terms of a regression equation by examining significance of predictor terms during model building. Nineteen studies (22.1%) used a nonparsimonious approach in which all available covariates were entered. This approach was primarily used for studies that had only few variables. On average researchers that used the nonparsimonious approach reported that they collected 27 covariates (median = 19, 25th percentile = 9.25, 75th percentile = 40.25), whereas in studies that used stepwise procedures the average number of covariates was reported to be 83.3 (median = 54, 25th percentile = 18.75, 75th percentile = 177). Finally, a single study presented two approaches and used both a nonparsimonious model and a model in which terms were entered manually.

We believe that there is a serious lack of reporting on modeling strategies that are used to derive the final number of covariates in a model. Researchers should be aware that exclusion of a covariate (by whichever means this was derived)
implies the conviction on the part of the researcher that this variable can be ignored as a source of potential bias. Variables that are theoretically important confounders should be included in the model regardless of statistical significance, and in addition balance should be checked on all available covariates even if they were not included in the final estimation model.

Conditioning Strategy

Reporting on the general type of conditioning was overall satisfactory. Matching (in its many variants) was the most popular choice (55 studies; 64.0%), followed by stratification (19 studies; 22.1%), weighting (6 studies; 7.0%), and regression adjustment in an ANCOVA type model (3 studies; 3.5%). Three studies (3.5%) used and reported more than one conditioning strategy. In detail, one study used both matching and regression adjustment, and two studies used both matching and stratification.

Aspects of Matching

We assessed several important aspects of matching. First we determined what type of matching was used. Out of the 58 studies that used matching (note that this includes studies that used multiple conditioning methods, including matching), 6 studies (10.3%) did not report what type of matching was used. Twenty-five studies (43.1%) used 1:1 matching exclusively, and 18 studies (31.0%) used 1:many matching. A total of 9 studies (15.5%) used and reported several matching strategies. In detail, 6 studies (10.3%) used both 1:1 and 1:many matching; 2 studies (3.4%) used 1:1 matching and a second matching strategy categorized as “other” (e.g., kernel matching); and 1 study (1.7%) used 1:1 matching, 1:many matching, and a third “other” strategy.

Overall, this aspect of reporting was also satisfactory.

A second aspect of matching that we coded was whether greedy matching or a different kind of matching (e.g., optimal or kernel matching) was performed. Thirty-one studies (53.4%) used the simple greedy algorithm, whereas 14 studies (24.1%) relied on other algorithmic approaches, such as optimal matching, or kernel matching. The remaining 13 studies (22.4%) did not provide enough information about their matching strategy. Another aspect of matching that we assessed was whether a study that used matching relied on exact, nearest neighbor or a different algorithm (e.g., kernel matching). A single study used exact matching on the propensity score, 34 studies (58.6%) used nearest neighbor matching, and 18 studies (31%) used other approaches (e.g., kernel matching).

2 The “other” category was introduced because counts in several categories were very low and reliability suffered when these categories were considered separately.
The remaining 5 studies (8.6%) did not provide enough information to determine what type of matching was used. Among the 34 studies that used nearest neighbor matching, we checked whether or not researchers reported that they had used a caliper. Twenty-seven studies (79.4%) of the 34 studies that used nearest neighbor matching reported using a caliper. The other 7 studies (20.59%) did not report using any caliper. In an attempt to look more closely at how calipers are used in applied research, we recorded whether researchers reported the scale and the width of the caliper. Out of the 27 studies that reported that they have used a caliper, 9 studies (33.3%) failed to report the crucial information of what kind of caliper they used. The remaining 18 studies (66.7%) fortunately included this information. Nine studies (33.3%) reported that they used a caliper based on the raw propensity score. The most frequently chosen value (5 studies) was .01; on average the caliper width on the raw propensity score scale was .02. Four studies (14.8%) used a caliper based on the standard deviation of the raw propensity score. The width of this caliper ranged from .10 to .25. Finally, 5 studies (18.5%) used a caliper width based on the standard deviation of the logit of the propensity score. The most frequently used caliper (3 studies) had a width of .25.

Finally, we tried to assess the percentage of units retained after matching. Specifically, we wanted to know how large the overall sample size of any given study was before and after the matching procedure. Surprisingly this information was often not reported or had to be inferred from changes in degrees of freedom in statistical tests. For the 25 studies that provided this information, we were unable to achieve acceptable reliability between our two coders. Sample sizes before and after matching often had to be inferred from differences in degrees of freedom and in our study this turned out to be error prone. It is unfortunate that we were unable to reliably assess sample sizes before and after matching. Reporting actual sample sizes before and after matching (and not just degrees of freedom of tests conducted before and after matching) would help readers to assess these percentages more easily.

Overall, we feel that as long as researchers reported their strategies, many of them used defensible choices. Only a few studies employed techniques that would be considered unorthodox (e.g., a single study used an extremely small caliper width of .0005). The biggest problem was the substantial amount of underreporting of specific details. It was also interesting to see that there was a large amount of variability in approaches starting from type of matching, number of units matched, or the caliper width. None of these characteristics were used uniformly across all studies. Although we generally believe that pluralism in approaches is not necessarily bad (e.g., different data situations might call for slightly different approaches), this heterogeneity makes it somewhat hard for other researchers to replicate findings as they may be the result of idiosyncratic choices.
Aspects of Stratification

Out of the 21 studies that used stratification, 2 studies (9.5%) did not report the number of strata that were used. By far the most common choice of strata was 5 (as prescribed by Cochran, 1968), which was used by 10 studies (47.6%). Two studies (9.5%) used 6 strata, 3 studies (14.3%) used 10 strata, another 3 studies (14.3%) used 15 strata, and 1 study (4.8%) used 20 strata. The original recommendation of 5 strata is a useful rule of thumb that was demonstrated to remove nearly 90% of linear bias of a single covariate (Cochran, 1968). However, in the context of propensity score modeling, researchers should test whether the chosen number of strata actually balances covariates when conditioning on strata membership. If balance is not achieved, a larger number of strata might be needed.

Aspects of Weighting and ANCOVA

Weighting and ANCOVA were not frequently used. The six studies that used weighting relied on the inverse probability weights as described previously. The three studies that used regression adjustment used the propensity score as a covariate. The additional assumptions that accompany this approach were described earlier.

Aspects of Balance Checks and Common Support

We were especially interested in determining whether researchers conducted and reported model adequacy checks such as balance checks and checks on the common support region. A majority of 62 studies (72.1%) conducted some sort of balance checks, whereas the remaining studies (24; 27.9%) failed to report it. It is possible, though we believe not likely, that these studies conducted balance checks but simply chose not to report them. We note at this point that the percentage of studies in the social sciences that conducted the important balance checks was higher than the percentage of medical studies as reported in Austin (2008b).

We also examined how researchers tested for balance. Out of the 62 studies that did check for balance, a large number of studies (41 studies; 66.1%) used only significance tests, meaning that researchers computed a t or chi-square statistic for each covariate after matching and decided based on a p value whether or not balance was achieved. Fourteen studies (22.6%) assessed only standardized differences on covariates between groups; 3 studies (4.8%) presented a form of graphical comparison (either Q-Q plots or comparative distribution graphics such as box plots, histograms, or kernel density estimates). A single study (1.6%) reported raw differences on covariates. Several studies (3;
4.8%) used and reported more than one method for balance checks. In detail, one study used significance tests and standardized differences together; one study used a graph and standardized differences together; and finally one study used significance tests, standardized differences, and a graph. All studies in our sample only reported balance statistics (whether in the form of significance tests or standardized differences) on mean levels but never on variances of the covariates. We also coded whether a study checked balance (in whatever form) only on the propensity score as a summary measure or if individual covariates were checked for balance. We found that among the 62 studies that checked for balance, 8 studies (12.9%) checked balance on the propensity score alone, 45 studies (72.6%) checked balance on the covariates only, and 9 studies (14.5%) checked balance on both the covariates and the propensity score.

In a next step, we observed that most researchers did not report checks on the common support region. In 30 studies (34.9%) we found explicit mentioning of the common support region. In the other 56 studies (65.1%), we did not find any reporting on this matter. Again, we cannot rule out the possibility that researchers checked the common support region and chose not to report it, but we believe that this is unlikely.

Finally, we checked whether researchers reported that the propensity score model was respecified if imbalances were found. A respecification of the model would be the appropriate step to engage in if large imbalances would be found. We observed that only 10 studies (11.6%) reported revising a model when imperfect balance was found. Other studies gave no indication whether or not models were respecified. We are again not sure as to whether the remaining studies simply did not report whether a model was reestimated in order to not overburden the reader or if they simply ignored potential imbalances. Researchers should be aware that the first estimated propensity score model (which usually only includes linear terms) can fail to achieve balance on the observed covariates and needs to be reestimated with additional terms (e.g., interactions or polynomial terms). In regard to reporting and use of model checks we make the following observations: Given the tremendous importance of the balance property, the fact that almost 30% of studies did not check for balance is disappointing. A propensity score analysis without the balance checks can be based on a misspecified model and such a model cannot be expected to properly control for all potential biases on the observed covariates. We urge researchers to engage in balance checks and proper reporting of those checks every time a propensity score analysis is conducted. We further suggest that researchers rely on the assessment of standardized differences. The use of significance tests can in some circumstances be erroneous because imbalances might not be detected due to lower statistical power. Standardized differences do not confound balance with other factors and are the preferred method. Graphical comparisons as described earlier can be used in the estimation and conditioning phase of the propensity
score analysis as a quick way to gauge large imbalances, but we endorse using
them only in conjunction with examination of standardized differences.

We encourage researchers to examine the common support region as it relates
closely to generalizability of results. Although it might not always be necessary
to present graphs, we do believe that researchers should report in which range
of the propensity score distribution relevant matches could be found and which
region of the propensity score distribution had to be discarded.

Adjusted Standard Errors

In our sample we found no explicit mentioning of standard errors that were ad-
justed for the matched nature of the data (e.g., using dependent samples t tests).
However, we found several studies (12; 14.0%) that reported using bootstrap
standard error. Bootstrapped standard errors are often used in circumstances
in which a theoretical sampling distribution is unknown, however, Abadie and
Imbens (2008) recently argued that the bootstrap is an inappropriate method for
matched data. Therefore bootstrapping cannot be unconditionally recommended
in the context of propensity score matching.

DISCUSSION

Overall, we think that both good but also suboptimal practice exists with regard
to propensity score analysis. On the one hand, we are pleased to see that
researchers in the social sciences are exploring new methodological tools in their
substantive research. On the other hand, there are some clear deficiencies in the
use of propensity scores. Some of these deficiencies are related to poor reporting
practices. We provide applied researchers with a list of the minimal amount of
details that should be reported in a propensity score analysis in Table 6.

Areas in which positive practice dominates are reporting practices of esti-
mation choices and the general conditioning strategy. Also, the fact that most
researchers do not simply use demographics to conduct post hoc propensity
score analyses is a sign of good practice. Many of the choices, when reported,
were often sensible, for example, the often used logistic regression equation
followed by a simple 1:1 matching scheme. Areas of improvement on the use
and reporting of propensity score methods are the following:

1. Researchers should make very clear which variables were collected and
 even more important which ones were actually included in the estimation
 of the propensity score. Appendices that list variables are recommended.
 There should be an increased awareness that omission of variables in
 the propensity score estimation implicitly assumes that potential biases
TABLE 6
Minimal Amount of Details That Should Be Reported When Conducting a Propensity Score Analysis

<table>
<thead>
<tr>
<th>#</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>List of all covariates that were collected (with reliabilities)</td>
</tr>
<tr>
<td>2</td>
<td>List of all covariates that were used to estimate the propensity score</td>
</tr>
<tr>
<td>3</td>
<td>Method that was used to determine set of covariates used for estimation (e.g., nonparsimonious model, predetermined significance threshold)</td>
</tr>
<tr>
<td>4</td>
<td>Inclusion of polynomial or interaction terms</td>
</tr>
<tr>
<td>5</td>
<td>Estimation method for propensity scores (e.g., logistic regression, regression trees)</td>
</tr>
<tr>
<td>6</td>
<td>Conditioning strategy (e.g., matching, stratification, weighting)</td>
</tr>
<tr>
<td>7</td>
<td>Region of common support (histograms, ranges)</td>
</tr>
<tr>
<td>8</td>
<td>Details on matching scheme, if applicable</td>
</tr>
<tr>
<td>8.1</td>
<td>Type of matching algorithm (e.g., nearest neighbor, optimal, full, kernel)</td>
</tr>
<tr>
<td>8.2</td>
<td>Number of treated and control units that were matched with each other (e.g., 1:1, 1:many)</td>
</tr>
<tr>
<td>8.3</td>
<td>Matching with or without replacement</td>
</tr>
<tr>
<td>8.4</td>
<td>Caliper width, if applicable</td>
</tr>
<tr>
<td>9</td>
<td>Details on stratification, if applicable</td>
</tr>
<tr>
<td>9.1</td>
<td>Number of strata</td>
</tr>
<tr>
<td>9.2</td>
<td>Strategy to define strata (equal proportions, minimize variance)</td>
</tr>
<tr>
<td>10</td>
<td>Details on weighting, if applicable</td>
</tr>
<tr>
<td>10.1</td>
<td>Type of weights used (inverse probability weights, odd weights)</td>
</tr>
<tr>
<td>10.2</td>
<td>Distribution of weights, reporting of unusually large weights</td>
</tr>
<tr>
<td>11</td>
<td>Sample size before and after conditioning; report effective sample size if weights are used</td>
</tr>
<tr>
<td>12</td>
<td>Standardized difference before and after matching on the propensity score and all covariates, potentially also on interactions and quadratic terms</td>
</tr>
<tr>
<td>13</td>
<td>Point estimate of treatment effect and associated standard error</td>
</tr>
<tr>
<td>14</td>
<td>Inclusion of covariates in outcome model</td>
</tr>
</tbody>
</table>

from this variable are considered negligible. Concerning covariates, it is also important that researchers are aware that unreliable covariates tend to reduce less bias than perfectly reliable covariates as has been shown by recent research by Cook and Steiner (2010) and Cook, Steiner, and Pohl (2009).

2. More recent advances in the field of matching could be incorporated in the current methods canon of applied researchers. These include methods that match more than a single unit with another, such as full matching (Hansen, 2004; Rosenbaum, 1991c), entire matching (Yoon, 2009), or 1 to many matching schemes. These methods allow retaining more participants in the matched sample (when compared with simple 1:1 matching), especially when sample sizes of treated and untreated participants are very different.

3. The use of more advanced estimation methods is encouraged. Often linear logistic regression models approximate the true relationship between co-
variates and treatment assignment well; however, the inclusion of nonlinear terms (interactions and polynomials) can improve the selection model. Methods such as boosted regression trees (McCaffrey et al., 2004) or genetic matching (Diamond & Sekhon, 2005) attempt to find these complex relationships by applying automatic data mining algorithms.

4. Balance checks should be conducted by examining standardized differences before and after matching on all covariates that were collected in the data set. The practice of using significance tests is still very widespread and an appreciation of the fact that nonsignificant results can just emerge out of reduced sample sizes (and not increased balance) is necessary. Even though there is no generally accepted cutoff for what constitutes a critical imbalance on the standardized difference metric, nontrivial standardized differences should be considered problematic and should trigger the researcher to reestimate the model or apply a more stringent conditioning scheme (e.g., smaller calipers, more strata). Generally, the smaller the standardized difference is, the less likely this covariate is to exert any residual bias on the treatment effect. Austin (2009a) provides advice on how to determine a range of standardized differences that would be expected by chance to provide researchers with an idea of the magnitude of difference that is likely acceptable.

5. The common support region should be examined and implications regarding generalizability should be addressed by the researcher. A small area of common support informs the researcher that the observed causal effect is only valid for a small subpopulation of the observed sample and unlikely to generalize to other populations. Large areas of common support, on the other hand, increase one’s faith that the observed effect is valid for the whole population that is being represented by the sample at hand. Common support checks can be conducted graphically or simply by examining the range of matched and unmatched participants.

Propensity score methodology and associated procedures are most likely going to stay with us as statistical tools in applied social science research. It is of importance that as a field we strive to use these methods in the most appropriate fashion, incorporate new developments, and report our analyses in a way that makes them replicable for future researchers.

ACKNOWLEDGMENTS

Felix J. Thoemmes is now at the University of Tübingen, Germany. We thank Elizabeth Stuart for her feedback on earlier versions of this article.
REFERENCES

APPENDIX

References Used in the Systematic Literature Review

